Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 226(2): 523-540, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31828801

RESUMO

Fungal phytopathogens can suppress plant immune mechanisms in order to colonize living host cells. Identifying all the molecular components involved is critical for elaborating a detailed systems-level model of plant infection probing pathogen weaknesses; yet, the hierarchy of molecular events controlling fungal responses to the plant cell is not clear. Here we show how, in the blast fungus Magnaporthe oryzae, terminating rice innate immunity requires a dynamic network of redox-responsive E3 ubiquitin ligases targeting fungal sirtuin 2 (Sir2), an antioxidation regulator required for suppressing the host oxidative burst. Immunoblotting, immunopurification, mass spectrometry and gene functional analyses showed that Sir2 levels responded to oxidative stress via a mechanism involving ubiquitination and three antagonistic E3 ubiquitin ligases: Grr1 and Ptr1 maintained basal Sir2 levels in the absence of oxidative stress; Upl3 facilitated Sir2 accumulation in response to oxidative stress. Grr1 and Upl3 interacted directly with Sir2 in a manner that decreased and scaled with oxidative stress, respectively. Deleting UPL3 depleted Sir2 during growth in rice cells, triggering host immunity and preventing infection. Overexpressing SIR2 in the Δupl3 mutant remediated pathogenicity. Our work reveals how redox-responsive E3 ubiquitin ligases in M. oryzae mediate Sir2 accumulation-dependent antioxidation to modulate plant innate immunity and host susceptibility.


Assuntos
Magnaporthe , Oryza , Sirtuínas , Ascomicetos , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Imunidade Inata , Magnaporthe/metabolismo , Oryza/metabolismo , Oxirredução , Doenças das Plantas , Imunidade Vegetal , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Microbiology (Reading) ; 165(11): 1198-1202, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31517594

RESUMO

Following penetration, the devastating rice blast fungus Magnaporthe oryzae, like some other important eukaryotic phytopathogens, grows in intimate contact with living plant cells before causing disease. Cell-to-cell growth during this biotrophic growth stage must involve nutrient acquisition, but experimental evidence for the internalization and metabolism of host-derived compounds is exceedingly sparse. This striking gap in our knowledge of the infection process undermines accurate conceptualization of the plant-fungal interaction. Here, through our general interest in Magnaporthe metabolism and with a specific focus on the signalling and redox cofactor nicotinamide adenine dinucleotide (NAD), we deleted the M. oryzae QPT1 gene encoding quinolinate phosphoribosyltransferase, catalyst of the last step in de novo NAD biosynthesis from tryptophan. We show how QPT1 is essential for axenic growth on minimal media lacking nicotinic acid (NA, an importable NAD precursor). However, Δqpt1 mutant strains were fully pathogenic, indicating de novo NAD biosynthesis is dispensable for lesion expansion following invasive hyphal growth in leaf tissue. Because overcoming the loss of de novo NAD biosynthesis in planta can only occur if importable NAD precursors (which solely comprise the NA, nicotinamide and nicotinamide riboside forms of vitamin B3) are accessible, we unexpectedly but unequivocally demonstrate that vitamin B3 can be acquired from the host and assimilated into Magnaporthe metabolism during growth in rice cells. Our results furnish a rare, experimentally determined example of host nutrient acquisition by a fungal plant pathogen and are significant in expanding our knowledge of events at the plant-fungus metabolic interface.


Assuntos
Magnaporthe/fisiologia , Niacinamida/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Meios de Cultura/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Magnaporthe/genética , Magnaporthe/metabolismo , Mutação , NAD/metabolismo , Niacina/metabolismo , Niacinamida/análise , Oryza/química , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Folhas de Planta/química , Folhas de Planta/microbiologia
3.
Nat Microbiol ; 2: 17054, 2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-28418377

RESUMO

Understanding how microorganisms manipulate plant innate immunity and colonize host cells is a major goal of plant pathology. Here, we report that the fungal nitrooxidative stress response suppresses host defences to facilitate the growth and development of the important rice pathogen Magnaporthe oryzae in leaf cells. Nitronate monooxygenases encoded by NMO genes catalyse the oxidative denitrification of nitroalkanes. We show that the M. oryzae NMO2 gene is required for mitigating damaging lipid nitration under nitrooxidative stress conditions and, consequently, for using nitrate and nitrite as nitrogen sources. On plants, the Δnmo2 mutant strain penetrated host cuticles like wild type, but invasive hyphal growth in rice cells was restricted and elicited plant immune responses that included the formation of cellular deposits and a host reactive oxygen species burst. Development of the M. oryzae effector-secreting biotrophic interfacial complex (BIC) was misregulated in the Δnmo2 mutant. Inhibiting or quenching host reactive oxygen species suppressed rice innate immune responses and allowed the Δnmo2 mutant to grow and develop normally in infected cells. NMO2 is thus essential for mitigating nitrooxidative cellular damage and, in rice cells, maintaining redox balance to avoid triggering plant defences that impact M. oryzae growth and BIC development.


Assuntos
Imunidade Inata , Magnaporthe/fisiologia , Oryza/imunologia , Oryza/microbiologia , Estresse Oxidativo , Estresse Fisiológico , Proteínas Fúngicas/genética , Hifas/crescimento & desenvolvimento , Magnaporthe/genética , Magnaporthe/crescimento & desenvolvimento , Magnaporthe/imunologia , Mutação , Oryza/genética , Oryza/metabolismo , Oxirredução , Doenças das Plantas/genética , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
Sci Rep ; 3: 2398, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23928947

RESUMO

Increasing incidences of human disease, crop destruction and ecosystem perturbations are attributable to fungi and threaten socioeconomic progress and food security on a global scale. The blast fungus Magnaporthe oryzae is the most devastating pathogen of cultivated rice, but its metabolic requirements in the host are unclear. Here we report that a purine-requiring mutant of M. oryzae could develop functional appressoria, penetrate host cells and undergo the morphogenetic transition to elaborate bulbous invasive hyphae from primary hyphae, but further in planta growth was aborted. Invasive hyphal growth following rice cell ingress is thus dependent on de novo purine biosynthesis by the pathogen and, moreover, plant sources of purines are neither available to the mutant nor required by the wild type during the early biotrophic phase of infection. This work provides new knowledge about the metabolic interface between fungus and host that might be applicable to other important intracellular fungal pathogens.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Ascomicetos/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Purinas/biossíntese , Proliferação de Células
5.
PLoS One ; 7(10): e47392, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071797

RESUMO

Fungal diseases cause enormous crop losses, but defining the nutrient conditions encountered by the pathogen remains elusive. Here, we generated a mutant strain of the devastating rice pathogen Magnaporthe oryzae impaired for de novo methionine biosynthesis. The resulting methionine-requiring strain grew strongly on synthetic minimal media supplemented with methionine, aspartate or complex mixtures of partially digested proteins, but could not establish disease in rice leaves. Live-cell-imaging showed the mutant could produce normal appressoria and enter host cells but failed to develop, indicating the availability or accessibility of aspartate and methionine is limited in the plant. This is the first report to demonstrate the utility of combining biochemical genetics, plate growth tests and live-cell-imaging to indicate what nutrients might not be readily available to the fungal pathogen in rice host cells.


Assuntos
Magnaporthe/fisiologia , Fenômenos Fisiológicos da Nutrição/fisiologia , Oryza/microbiologia , Ácido Aspártico/metabolismo , Primers do DNA/genética , Funções Verossimilhança , Magnaporthe/genética , Metionina/genética , Metionina/metabolismo , Mutação/genética , Organismos Geneticamente Modificados , Filogenia
6.
PLoS Genet ; 8(5): e1002673, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22570632

RESUMO

Understanding the genetic pathways that regulate how pathogenic fungi respond to their environment is paramount to developing effective mitigation strategies against disease. Carbon catabolite repression (CCR) is a global regulatory mechanism found in a wide range of microbial organisms that ensures the preferential utilization of glucose over less favourable carbon sources, but little is known about the components of CCR in filamentous fungi. Here we report three new mediators of CCR in the devastating rice blast fungus Magnaporthe oryzae: the sugar sensor Tps1, the Nmr1-3 inhibitor proteins, and the multidrug and toxin extrusion (MATE)-family pump, Mdt1. Using simple plate tests coupled with transcriptional analysis, we show that Tps1, in response to glucose-6-phosphate sensing, triggers CCR via the inactivation of Nmr1-3. In addition, by dissecting the CCR pathway using Agrobacterium tumefaciens-mediated mutagenesis, we also show that Mdt1 is an additional and previously unknown regulator of glucose metabolism. Mdt1 regulates glucose assimilation downstream of Tps1 and is necessary for nutrient utilization, sporulation, and pathogenicity. This is the first functional characterization of a MATE-family protein in filamentous fungi and the first description of a MATE protein in genetic regulation or plant pathogenicity. Perturbing CCR in Δtps1 and MDT1 disruption strains thus results in physiological defects that impact pathogenesis, possibly through the early expression of cell wall-degrading enzymes. Taken together, the importance of discovering three new regulators of carbon metabolism lies in understanding how M. oryzae and other pathogenic fungi respond to nutrient availability and control development during infection.


Assuntos
Repressão Catabólica/genética , Proteínas Fúngicas , Fungos/metabolismo , Oryza , Doenças das Plantas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/genética , Fungos/patogenicidade , Glucose/metabolismo , Magnaporthe/genética , Magnaporthe/metabolismo , Magnaporthe/patogenicidade , Oryza/genética , Oryza/metabolismo , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...